
UCRL-JRNL-203500

Breakdown of Hot-Spot model in
determining convective amplification in
large homogeneous systems

P. Mounaix, L. Divol

April 13, 2004

Physical Review Letters



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



Breakdown of Hot-Spot model in determining convective amplification in large

homogeneous systems

Philippe Mounaix∗
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Convective amplification in large homogeneous systems is studied, both analytically and numeri-
cally, in the case of a linear diffraction-free stochastic amplifier. Overall amplification does not result
from successive amplifications in small scale high intensity hot-spots, but from a single amplification
in a delocalized mode of the driver field spreading over the whole interaction length. For this model,
the hot-spot approach is found to systematically underestimate the gain factor by more than 50%.
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Much experimental and theoretical work has been de-
voted over the last two decades to studying the influence
of laser beam smoothing on scattering instabilities. Over
this period of time, the steady increase of the available
laser intensity has rapidly driven the classical perturba-
tive approach to this problem [1] to the wall. In order to
meet the new experimental requirements, a simple model
has been worked out [2][3] in which the macroscopic re-
flectivity near and above the instability threshold is as-
sumed to be mainly determined by the high overintensi-
ties, or hot-spots (HS), of the laser field, randomly dis-
tributed in the interaction region. Surprisingly enough,
HS models have only been loosely justified since the work
of Ref. [2], mainly on the basis of a somewhat intuitive
use of the theory of local maxima of Gaussian fields [4].

The first attempt to a closer look at the validity
of the HS models was carried out by one of us in Ref.
[5]. Considering the small system limit in which multiple
amplifications in successive hot-spots can be neglected,
it was shown that random fluctuations of the HS field
around its deterministic component can have a signifi-
cant effect on the overall reflectivity. This was in flat
contradiction with the HS model assumption that each
hot-spot near its maximum can be approximated by a
non-stochastic intensity profile depending on the corre-
lation function of the laser field and being the same for
each hot-spot [4][6]. The result of Ref. [5] questioned
the validity of HS models in their description of the am-
plification within each hot-spot without challenging the
fundamental assumption that it is the hot-spots that de-
termines the overall above-threshold reflectivity. While
this assumption is natural for small systems, it cannot
be justified in the case of large homogeneous systems.

In this Letter, we address the important question of
the conceptual validity of HS models for large homoge-
neous systems in the simplest case of a one-dimensional
(1D) linear convective amplifier. We show both analyt-

ically and numerically that the macroscopic reflectivity
near and above threshold is determined by the occurrence
of intense, well defined, coherent structures of the laser
field characterized by a single deterministic profile which
is a delocalized mode spreading over the whole interaction
length. The emerging picture is thus extremely different
from successive amplifications in small scale hot-spots,
as predicted by the HS approach which fails to retrieve
the results of the underlying convective amplifier both
quantitatively and qualitatively.

We consider the following one-dimensional (1D)
stochastic amplifier

∂xE(x) = g|S(x)|2E(x), (1)

with 0 ≤ x ≤ L. g is a coupling constant playing the role
of the average laser intensity. S is a complex homoge-
neous Gaussian field defined by 〈S(x)〉 = 〈S(x)S(x′)〉 = 0
and 〈S(x)S(x′)∗〉 = C(x− x′), and normalized such that
C(0) = 1. Solving Eq. (1) with E(0) = 1 and aver-
aging over the realizations of S one obtains 〈E(L)2〉 =
∏+∞

n=1(1 − 2gκn)−1, where κ1 > κ2... > κn > ... are the
eigenvalues of C(x − x′) for 0 ≤ x, x′ ≤ L, (for the sake
of simplicity we assume that κn is not degenerate). The
smallest g at which 〈E(L)2〉 diverges defines the critical
coupling g2 for the intensity. Physically, it corresponds
to the threshold for the scattered power [2][7]. It is eas-
ily seen that g2 = (2κ1)

−1 and one has the asymptotic
behavior 〈E(L)2〉 ∼ (1 − g/g2)

−1 as g ↑ g2, As an exact
result, this asymptotic behavior provides a good bench-
mark for testing the validity of the HS model approach
to the stochastic amplifier (1).

Denote by lc the correlation length of S defined by
the expansion |C(x)|2 = 1 − x2/l2c + O(x4/l4c). The
HS models associated with Eq. (1) consist of N = 1 +
Int(L/2lc) successive boxes of length L/N ∼ 2lc with at
most one hot-spot in each box. The hot-spot contribu-
tion to 〈E(L)2〉 of each box can be computed in the frame
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of the model of Ref. [5], with the only difference that the
hot-spot field is now complex [8]. The simplest (and only
tractable) version assumes that the hot-spots are statis-
tically independent. In this case, 〈E(L)2〉HS is given by
the average over M of AM

HS where M is the number of
hot-spots in the system and AHS is the average amplifi-
cation for one hot-spot [5][8]. By HS statistical indepen-
dence, M is a binomial random variable with parameters
N and p = N>(3)/N , where N>(3) is the average num-
ber of hot-spots with intensity I > 3〈I〉. After some
straightforward algebra, one obtains the asymptotic be-
havior 〈E(L)2〉HS ∼ (1 − g/gHS

2 )−N as g ↑ gHS
2 where

(gHS
2 )−1 = 2

∫ lHS/2

−lHS/2 |C(x)|2 dx with lHS = min(lc, L).

Beside the fact that gHS
2 is not equal to g2 [5], the most

striking discrepancy with the exact calculation is the de-
gree of divergence. For large systems with L � lc, the
simplest HS model badly overestimates the exponent of
the divergent factor. This incorrect asymptotic behav-
ior is a direct consequence of the assumption of hot-
spot statistical independence. Any nonvanishing hot-
spot correlation will split the degeneracy of the N -fold
pole g = gHS

2 , lowering the exponent of the divergent
factor (down to the correct value 1 if the new smallest
pole is simple). The necessity for any realistic HS model
to include HS correlations is born out by the fact that
maxima of a Gaussian field are more correlated than the
field itself [9]. Thus, a satisfactory HS model should at
least include both the HS field fluctuations (according to
[5]) and the HS correlations, making it practically un-
tractable. This striking contrast between the complexity
of a proper HS approach and the simplicity of the ex-
act calculation hints that the HS ansatz might not be
adequate for large homogeneous systems.

Let us reconsider the problem without any a priori

assumption on the statistical importance of hot-spots.
From the solution to Eq. (1), it can be seen that the di-
vergence of 〈E(L)2〉 is due to the realizations of S with
an arbitrarily large ||S||22 ≡ Lu [10]. Do these partic-
ular realizations of S possess a strong coherent com-
ponent leading to a well defined (nearly) deterministic
profile? Does this profile look like a row of hot-spots?
For any given r > 0, let Sr be the conditional field
corresponding to the realizations of S with Lu ≥ r.
The realizations of S which determine the divergence
of 〈E(L)2〉 are also realizations of Sr, with arbitrarily
large r. Thus, one has to determine whether Sr has a
strong coherent component as r → +∞. Expanding S
according to the Karhunen-Loève expansion [6], it can
be shown that, for any given r > 0 and any realization

of S, d2
2(r

−1/2S, ϕ1e
iθ) =

(

√

1 + κ1σ/r − 1
)2

+ ∆u/r,

where d2 denotes the L2-distance [10], ϕ1 is the normal-
ized eigenfunction associated with κ1, θ = arg(ϕ1, S),
σ = s1 − r/κ1, and ∆u =

∑

n≥2 κnsn, where the sns are
independent exponential random variables with 〈sn〉 = 1.
From the probability distribution of sn one finds that,

assuming Lu ≥ r, both σ and ∆u remain bounded with
probability one as r → +∞ [11]. Since the expression
of d2

2(r
−1/2S, ϕ1e

iθ) is true for any realization of S, it
applies to any realization of Sr and one obtains

r−1/2Sr(x) → ϕ1(x)eiθ (r → +∞), (2)

with probability one [12]. Accordingly, the realizations
of S determining the divergence of 〈E(L)2〉 do possess a
well defined deterministic profile given by ϕ1(x). This
profile results from the unbounded raise of the statistical
weight of the ϕ1-component of S as u tends to infinity.
Since ϕ1(x) is a one-bump delocalized mode spreading
over the whole interaction length, the emerging picture
for L � lc is extremely different from the HS model
ansatz of successive amplifications in localized structures
of size ∼ lc [13].

The asymptotic result (2) may be regarded as some-
what academical in the sense that, for any given real-
ization of S, u will be finite with probability one. To
check the validity of our scenario for finite u, we have
reconsidered the problem (1) in which S is sampled from
numerical realizations of a two-dimensional (2D) top-hat
random-phase-plate field [14], SRPP , with realistic pa-
rameters. We have simulated a 0.35 µm laser with a f/8
aperture propagating in a box of length 1 mm and cross
section 2.24 mm. With these parameters the longitudi-
nal and transverse correlation lengths of the smoothed
laser field are lc = 100 µm and lc⊥ = 1.61 µm. Con-
sider the 2D problem where E(y, x) is given by (1) with
S(x) = SRPP (y, x). Let SRPP,i be the ith realization
of SRPP , Gi(y) = g||SRPP,i||

2
2(y) the gain factor at y

and x = L, 〈G〉 = gL, and yj = jlc⊥ with 1 ≤ j ≤
1391. We have used the following two samples: (i)
{S}u ≡ {SRPP,i(yj , x)} such that Gi(yj) > u〈G〉 among
60000 realizations; and (ii) {S}max

u ≡ {SRPP,i(y
∗
i , x)}

where y∗
i maximizes Gi(y) and such that Gi(y

∗
i ) > u〈G〉

among 60000 realizations. {S}max
u samples SRPP be-

hind the highest peak of |E(y, L)|2, where SRPP is ex-
pected to contribute effectively to the reflectivity near
and above threshold. We have measured the emer-
gence of ϕ1 through: (a) the L2-distance between S
and its ϕ1-component, d2(Ŝ, Ŝ1), where Ŝ = S/||S||2
and Ŝ1 = (ϕ1, Ŝ)ϕ1; and (b) the relative contribution
of the ϕ1-component to the gain, α1 ≡ G1/G, where
G = g||S||22 and G1 = g|(ϕ1, S)|2. These two quantities
are related to each other by α1 = 1 − d2

2(Ŝ, Ŝ1).
Figure 1 shows the probability distribution of

d2(Ŝ, Ŝ1) estimated from the samples {S}0 and {S}max
u

with u = 3, 4, and 5. The last three curves are condi-
tional probabilities knowing that |E(y, L)|2 is maximum
with G/〈G〉 > 3, 4, and 5 respectively. It can be seen that
behind the peaks of |E(y, L)|2, the x-profile of SRPP is
significantly closer to ϕ1(x) than average, and the larger
the peak the smaller d2(Ŝ, Ŝ1) as expected from Eq. (2).
The statistical bias of Ŝ towards ϕ1 could have been
brought to the fore otherwise. For instance, (2) implies
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FIG. 1: Probability distribution of d2(Ŝ, Ŝ1) estimated from
{S}0 (solid line), {S}max

3 (dotted line), {S}max
4 (dashed line),

and {S}max
5 (dashed-dotted line).

〈|Ŝ(x)|2〉
1/2
u → |ϕ1(x)| as u → +∞, where 〈·〉u denotes

conditional average knowing G > u〈G〉. Figure 2 shows
sample estimates of 〈|Ŝ(x)|2〉1/2 for {S}0, {S}

max
4 , and

{S}max
5 . The emergence of |ϕ1(x)| as u increases is ob-

vious.
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FIG. 2: Profiles of |ϕ1(x)| (grey line) and 〈|Ŝ(x)|2〉1/2 es-
timated from {S}0 (solid line), {S}max

4 (dotted line), and
{S}max

5 (dashed line).

By themselves, the previous results are not sufficient
to rule out the HS approach. If the relative HS contri-
bution to the gain is found to be close to 1 for finite
(realistic) u, there is no reason for not regarding the HS
model as a satisfactory heuristic model capable of giving
a good estimate of the reflectivity. To address this point,

we have compared α1 with its HS model counterpart

αHS ≡
GHS

G
=

lHS

||S||22

[

1 −
1

3

(

lHS

2lc

)2
]

M
∑

n=1

|S(xn)|2,

where GHS is the HS contribution to G and xn is the loca-
tion of the nth local maxima of |S(x)|2 with |S(xn)|2 > 3.
It is important to notice that, since we make no assump-
tion about HS statistical independence, effects of HS cor-
relations [9] are automatically taken into account in our
statistics of αHS . Figures 3 and 4 show the probability
distributions of α1 and αHS estimated from the samples
{S}u−{S}u+0.12 as functions of (u, α1) and (u, αHS) re-
spectively. These probabilities are conditional knowing
u < G/〈G〉 ≤ u + 0.12. For u > 3, {S}max

u yields similar
results (there is no realization of {S}max

u with G < 3〈G〉).
The behavior of α1 consists of two phases: (A) a

rapid increase up to α1 ∼ 0.8 for 0 ≤ u <
∼ 3 correspond-

ing to the slump of the number of not ϕ1-dominated
realizations as u increases; and (B) a slower growth
for u > 3 where all the realizations are ϕ1-dominated
with (small) superimposed fluctuations the relative im-
portance of which decreases slowly as u increases. The
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FIG. 3: Probability distribution of α1 ≡ G1/G knowing u ≡
G/〈G〉 as a function of u and α1. The dashed lines indicate
the most probable value of α1 at given u.

contribution of ϕ1 represents more than 80% of the gain
for u as small as 3 <

∼ u <
∼ 6, which confirms the relevance

of Eq. (2) for finite u and justifies its applicability even
for low values of u.

The behavior of αHS consists of four phases. The
first three ones correspond to well defined populations of
realizations: (A) realizations with no HS; (B) [resp. (C)]
realizations with one (resp. two) HS. The saturation at
αHS ' 45% for u > 3 (D), which is associated with rare
realizations with 3 to 5 HS, does not depend on L for
L � lc. This remarkable result follows from the fact that,
for large u and L/lc, local maxima of |S|2 correspond to
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FIG. 4: Probability distribution of αHS ≡ GHS/G knowing
u ≡ G/〈G〉 as a function of u and αHS . The dashed line at
45% indicates the most probable value of αHS in the satura-
tion phase (see the text for an explanation of this saturation).

small fluctuations of S around a large ϕ1-component. In
this limit, almost all of the N ' L/2lc possible max-
ima are HS (in the sense that |S(xn)|2 > 3), with width
∼ lc and amplitude close to the one of the underlying ϕ1-
component. (Note that in this regime, hot-spots cannot
be assumed to be statistically independent as there is a
strong ϕ1-induced HS correlation.) Thus, for large u and
L/lc, one has αHS ∼ N(lHS/L)α1 ' 0.5α1

<
∼ 0.5 inde-

pendent of L. The latter inequality shows that, for large
homogeneous systems with L � lc and as far as model
(1) is concerned, HS contribution alone fails to provide
a satisfactory estimate of the gain, in contradiction with
the fundamental assumption of the HS approach.

In this Letter, the breakdown of the HS approach to
convective amplification in large homogeneous systems
has been established. By considering the simplest ampli-
fier admiting a HS model description, it has been shown
both analytically and numerically that high amplification
does not originate in the hot-spots of the driver field, as
assumed by the HS approach, but in a delocalized mode of
this field spreading over the whole interaction length. We
expect the above considerations to apply almost literally
also to more realistic models of stationary convective am-
plification driven by a spatially smoothed laser beam [15].
The determination of the amplification taking diffraction
into account is a particularly interesting problem. In
this case, its seems that the only difference at lowest or-
der consists in replacing E(y, L), solution to (1) with
S(x) = SRPP (y, x), by

∑

n En(y, L) in which En(y, L) is

solution to (1) with S(x) = SRPP (y
(n)
max(x), x) where the

y
(n)
maxs are continuous paths maximizing the largest eigen-

value of C(x, x′) = 〈SRPP (y(x), x)SRPP (y(x′), x′)∗〉 with

y
(n)
max(L) = y. Following then the same line of reason-

ing as above, one expects amplification to originate in

thin tubes surrounding (or close to) the y
(n)
maxs and along

which the profile of SRPP is given by the fundamental
eigenmode of the corresponding C(x, x′). The verifica-
tion of these predictions will be the subject of a future
work.
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